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3 The Lorentz model for the classical transport of charges

3.1 Hypothesis of the model

Assumptions

1. me �Mion

• naming of distributions: f for e, F for ions.

2. ignore e−-e− interactions

• handwaving . . . and later in the book

• treating e−-density as small: n2e � ne

3. electron scattering is short range

→ it takes a very short time

• e− interacts with ions only ”once”, i.e. no double interactions

⇒ we can calculate the kinematics of the scattering by scattering theory (Appendix C)

4. there are no e−-ion correlations before the collision

3.2 Lorentz kinetic equation

The equation can be obtained from the BBGKY hierarchy[
∂

∂t
+ {Hn, ·}

]
F (1,0)[~ra, ~pa; t] =

∫
dã
∂φAAaã
∂~ra

∂

∂~pa
F (2,0)[~ra, ~pa, ~rã, ~pã; t]

+

∫
db̃
∂φAB

ab̃

∂~ra

∂

∂~pa
F (1,1)[~ra, ~pa;~rb̃, ~pb̃; t] (1)

• from assumption 2. we get F (2,0) = 0

• from assumption 4. we get F (1,1)[~ra, ~pa;~rb̃, ~pb̃; t] = f [~ra, ~pa; t]F [~rb̃, ~pb̃; t]

• so going from ~p→ ~c we get[
∂

∂t
+ ~c · ∂

∂~r
+ ~̇c · ∂

∂~c

]
f [~r,~c; t] =

∫
d3xb d

3cb F [~xb,~cb; t]
∂φAB(~r − ~xb)

∂~r
· ∂f [~r,~c; t]

∂~c
(2)

• from assumption 3. (scattering theory) we can determine the kinematics of the scattering instead

of using the term ∂φAB(~r−~xb)
∂~r · ∂∂~c ∝ δ(~r − ~xb)

– scattering happens only at a single point: f [~ra,~ca; t]F [~rb̃,~cb̃; t]→ f [~r,~ca; t]F [~r,~cb̃; t]

• the integral
∫
d3xb d

3cb F [~xb,~cb; t] counts the scattering centers (ions)

⇒ the r.h.s. can be understood as terms that reduce the number of electrons in the range (c, c + δc),
i.e. loss terms J−[f ], and terms that increase this number, i.e. gain terms J+[f ].

Scattering: ~c[e−] + ~c1 [ion] → ~c ′[e−] + ~c ′1 [ion] loss term

d3c J−[f(~r,~c; t)] =

∫
f(~r,~c; t)|~c− ~c1|∆t b db dψ d3c F (~r,~c1; t)d3r d3c1 (3)
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Inverse scattering: ~c∗[e−] + ~c∗1 [ion] → ~c[e−] + ~c1 [ion] gain term

d3c∗ J+[f(~r,~c∗; t)] =

∫
f(~r,~c∗; t)|~c∗ − ~c∗1|∆t b∗ db∗ dψ∗ d3c∗ F (~r,~c∗1; t)d3r d3c∗1 (4)

• time reversal invariance of classical scattering exchanges initial and final states between J+ and J−:

– ~c∗ ↔ ~c′ and ~c∗1 ↔ ~c′1

– energy, momentum, and angular momentum conservation imply the same impact parameter
and azimutal angle: b∗ = b and ψ∗ = ψ

– the integral measure for the initial state is the same as for the final state: d3c d3c1 = d3c′ d3c′1

∗ can be seen by going to Jacobi coordinates

• so get the gain term as

d3c J+[f(~r,~c′; t)] =

∫
f(~r,~c′; t)|~c− ~c1|∆t b db dψ d3c F (~r,~c′1; t)d3r d3c1 (5)

• and with interpreting ~̇c = q
m
~E we get (3.1) as the first equation of the BBGKY hierarchy:[

∂

∂t
+ ~c · ∂

∂~r
+

q

m
~E · ∂

∂~c

]
f [~r,~c; t] =

∫
[f ′F ′ − fF ]|~c− ~c1| b db dψ d3c1 (3.1)

where f = f(~c) = f(~r,~c; t), f ′ = f(~c′), F = F (~c1) = f(~r,~c1; t), and F ′ = F (~c′1).

3.3 Ion distribution function

Ions in thermal equilibrium have the Maxwell-Boltzmann distribution

F [~r,~c1; t] =FMB[~c1] = ni(~r; t)

(
M

2πkBT

)3/2

exp

[
−M~c 21

2kBT

]
(6)

with the ion density ni and their mass M .

• for M � me the distribution becomes much narrower:

lim
M→∞

F [~r,~c1; t] → ni(~r; t)δ(~c1) (7)

3.4 Equilibrium distribution

Energy conservation

1
2mc

2 + 1
2Mc21 = 1

2mc
′ 2 + 1

2Mc′ 21 (8)

implies

fMB[~c′]FMB[~c′1] = fMB[~c]FMB[~c1] (9)

and the r.h.s. of eq. (3.1) vanishes.

3.5 Conservation laws and collisional invariants

How microscopic conservation laws are expressed at the kinetic level.
Take any function ϕ(~c), multiply eq.(3.1) with it, and integrate over d3c:∫

d3cϕ(~c)

[
∂

∂t
+ ~c · ∂

∂~r
+

q

m
~E · ∂

∂~c

]
f [~r,~c; t] =

∫
[f ′F ′ − fF ]|~c− ~c1|ϕ(~c) b db dψ d3c d3c1 (10)

Using the definitions of Chapter 1 for density ρϕ and flux ~Jϕ

ρϕ =

∫
d3c ϕf ~Jϕ =

∫
d3c ϕf~c (3.4)
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• the first term of the l.h.s. is∫
d3cϕ

∂f

∂t
=

∂

∂t

∫
d3cϕf −

∫
d3cf

∂ϕ

∂t
=:

∂

∂t
ρϕ (11)

since ∂ϕ
∂t = 0.

• the second term of the l.h.s. is∫
d3cϕ~c · ~∇f = ~∇

∫
d3cϕ~cf −

∫
d3cf ~∇(ϕ~c) =: ~∇ ~Jϕ (12)

since ~∇(ϕ(~c)~c) = 0.

• the third term of the l.h.s. is∫
d3cϕ

q

m
~E · ∂

∂~c
f =

∫
d3c

∂

∂~c
(fϕ

q

m
~E)− q

m
~E ·
∫
d3cf

∂ϕ

∂~c

=:
[
fϕ(~c)

q

m
~E
]
boundary

− q

m
~E ·
∫
d3cf~g = 0− q

m
~E · ~ρ~g (13)

where ~g = ∂ϕ
∂~c .

we get eq. (3.3):

∂ρϕ
∂t

+ ~∇ ~Jϕ −
q

m
~E · ~ρ~g =

∫
[f ′F ′ − fF ]|~c− ~c1|ϕ b db dψ d3c d3c1 (3.3)

Looking at the r.h.s. we can use the same arguments that lead from eq. (4) to eq. (5) to reformulate the
part with the primed distributions into unprimed ones, giving

∂ρϕ
∂t

+ ~∇ ~Jϕ −
q

m
~E · ~ρ~g =

∫
[ϕ(~c ′)− ϕ(~c )] fF |~c− ~c1| b db dψ d3c d3c1 (3.7)

⇒ only differences of the function between initial and final state of the collision enter as sources for the
evolution of the distributions!

!!! if the function describes an invariant of the collision ⇒ the r.h.s is always zero!

• taking as an example the charge of the particle: φ(~c) = q we have ~g = ∂q
∂~c = 0 and we get the

differential form of Kirchhoff’s law:

∂ρ

∂t
+ ~∇ ~J =0 (3.8)

where we have the charge density

ρ(~r, t) = q

∫
d3c f(~r,~c, t) (3.9)

and the electric current

~J(~r, t) = q

∫
d3c f(~r,~c, t)~c (3.10)

3.6 Kinetic collision models

3.6.1 Rigid hard sphere

Assumption: Mion →∞, therefore static and F (~c1) = niδ(~c1).
The scattering can then be visualized by Fig. 3.5, giving the velocity after the collision as

~c′ = ~c− 2(~c · n̂)n̂ . (3.11)

The impact parameter is then just

b = R sin θ , (14)
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but the angle θ is restricted to (−π2 ,
π
2 ]. This gives the loss term, eq. (3),

J−[f(~r,~c; t)] =

∫
f(~r,~c; t)|~c− ~c1|b db dψ F (~r,~c1; t)d3r d3c1 = nif(~c)|~c|

∫ π
2

−π2
R sin θ R cos θ dθ 2π

=niπR
2f(~c)|~c| (15)

The rigid hard sphere model assumes an isotropic distribution of postcollisional velocities:

J+[f(~r,~c; t)] =niπR
2|~c |Pf(~c ) , (16)

where P averages over the direction:

Pf(~c ) =
1

4π

∫
f(~c )d2ĉ . (17)

3.6.2 Thermalizing ions: the BGK model

Allowing for a thermal distribution of ions, while still assuming similar kinematics: |~c1| � |~c | or |~c−~c1| ≈
|~c |. Treating ions as hard spheres gives the same loss term, only the gain term should be modified to

reflect the impact of the ion distribution: J+ ∝ |~c |f̂MB(~c ). Considering charge conservation gives the
normalization

J+ − J− =niπR
2|~c |

[
f̂MB(~c )

∫
|~c ′|f(~c ′)d3c′∫
|~c ′|f̂MB(~c ′)d3c′

− f(~c )

]
. (3.17)

3.7 Electrical conduction

3.7.1 Conservation equation

We already got the continuity equation, eq. (3.8), but we now also look for the response to the electric

field ~E. The task is to derive Ohm’s law ~J = σ ~E.

3.7.2 Linear response

Assumptions

• ~E is small: ~E = ε ~E0

• for ε→ 0, the electrons will reach the equilibrium distributiuon fMB

• for small fields we can approximate (i.e. make the ansatz)

f(~c ) = fMB(~c )[1 + εΦ(~c )] (3.18)

• since Φ should be linear in ~E, it has to the proportional to ~E.

• symmetry (i.e. tensorial) analysis:

Φ(~c ) = φ(c)~c · ~E0 (3.19)

– as ~c is the only available quantity, that can combine with ~E0 to give a scalar.

– and φ(c) depends only on |~c |.

3.7.3 Ohm’s law

Using the ansatz eq. (3.18) with eq. (3.19) for the calculation of the current, eq. (3.10), we get

~Jj(~r, t) = q

∫
d3c~cjfMB(~c )[1 + εφ(c)~c · ~E] = q

∫
d3c~cj ~ckfMB(~c )φ(c)ε ~Ek = q~~σjk · ε ~Ek (3.20)

with the conductivity tensor ~~σjk. For an isotropic system, the tensor is proportional to the unit matrix
δjk, giving the scalar conductivity

σ = 1
3Tr~~σ = q

3

∫
d3c |~c |2 fMB(~c )φ(c) . (3.21)
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3.7.4 Electrical conductivity

. . . to actually calculate it, we need φ(c).
Inserting the ansatz, eq. (3.18) and eq. (3.19), into eq. (3.1), we get[

∂

∂t
+ ~c · ∂

∂~r
+

q

m
~E · ∂

∂~c

]
fMB(~c )[1 + εφ(c)~c · ~E0]

=

∫ [
fMB(~c ′)[1 + εφ(c′)~c ′ · ~E0]F ′ − fMB(~c )[1 + εφ(c)~c · ~E0]F

]
|~c− ~c1| b db dψ d3c1 (18)

The first two terms on the l.h.s. vanish, as our ansatz has no time dependence and no spatial dependence.
Remembering ~E = ε ~E0, we see that the third term is already of order ε1 (for fMB see eq. (6):

q

m
~E · ∂

∂~c
fMB(~c )[1 + εφ(c)~c · ~E0] = ε

q

m
~E0 ·

∂fMB(~c )

∂~c
+O(ε2) = ε

q

m
~E0 ·

(
− m~c

kBT

)
fMB(~c ) +O(ε2) .

(19)

The r.h.s. is (again writing the shorter function Φ)

ε0
∫

[fMB(~c ′)F ′ − fMB(~c )F ] |~c− ~c1| b db dψ d3c1

+ ε1
∫

[fMB(~c ′)Φ(~c ′)F ′ − fMB(~c )Φ(~c )F ] |~c− ~c1| b db dψ d3c1 (20)

For the equilibrium distributions, depending only on |~c |, the ε0-term vanishes, as F ′ = F and f ′MB = fMB,
giving the simpler form:

ε1
∫
fMBFMB [Φ(~c ′)− Φ(~c )] |~c− ~c1| b db dψ d3c1 . (3.23)

That inspires to define the linear integral operator (with switched ordering of primed/unprimed)

I[Ψ] :=

∫
f̂MBF̂MB [Ψ(~c )−Ψ(~c ′)] |~c− ~c1| b db dψ d3c1 , (3.24)

where the hatted functions are the velocity distributions normalized to 1 without the spatial dependence:
fMB = nef̂MB. Then we can rewrite eq. (18) to order ε1 as

q

kBT
(−~c · ~E0)nef̂MB(~c ) = −neniI[Φ] = −neniI[φ(c)~c · ~E0] . (21)

Using isotropy we can drop ~E0, and defining a reduced φ̂ := ni
q φ, we get

ni
q
I[φ(c)~c ] = I[φ̂(c)~c ] =

1

kBT
f̂MB(c)~c , (3.26)

giving the conductivity, eq. (3.21):

σ =
q

3

∫
d3c |~c |2 fMB(~c )φ(c) =

q

3

∫
d3c c2 nef̂MB(~c )

q

ni
φ̂(c) =

q2ne
3ni

∫
d3c c2 f̂MB(c)φ̂(c) . (3.27)

Rigid hard sphere

The integral operator, eq. (3.24), is basically J−−J+, which we calculated for the rigid hard sphere model:

eq. (15) and eq. (16), allowing us to determine the φ̂ by eq. (3.26). For the gain term, we have to average
over the postcollisional velocities. But integrating Ψ = φ(c)~c over the directions gives zero, so only J−
contributes and we get the equation

J− − J+ = niπR
2f(~c )|~c | = nineπR

2f̂MB(c)
q

ni
φ̂(c)~c |~c | (15)

= nineI[Ψ] = nineI[φ(c)~c ] = qneI[φ̂(c)~c ] =
qne
kBT

f̂MB(c)~c , (3.26)

giving the solution

φ̂(c) =
1

πR2kBT |~c |
. (22)
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Putting this expression into the equation for the conductivity, eq. (3.27),

σ =
q2ne
3ni

∫
d3c c2

(
m

2πkBT

)3/2

exp

[
− m~c 2

2kBT

]
1

πR2kBT |~c |

=
q2ne

3niπR2kBT

(
m

2πkBT

)3/2 ∫ ∞
0

4πdc c3 exp

[
− mc2

2kBT

]
=

q2ne
3niπR2kBT

(
m

2πkBT

)3/2 ∫ ∞
0

2π
2kBT

m
dx

2kBT

m
xe−x

=
q2ne

3nikBTπR2

√
8kBT

πm
· 1 =

q2ne`

3kBT
〈|~c |〉 , (3.29)

with the mean free path ` = [niπR
2]−1 and the average velocity 〈|~c |〉 =

√
8kBT
πm .

BGK model

Due to isotropy, the BGK model gives the same solution as the rigid hard sphere model. For other model,
one has to look for numeric solutions.

3.7.5 Frequency response

Taking the electric field as

~E(t) = ε ~E0e
−iωt , (23)

the linear response will have the same forced time dependence

f(~c , t) = fMB(c)[1 + εΦω(~c )e−iωt] , (24)

giving an additional term, when inserted into eq. (3.1):[
∂

∂t
+ ~c · ∂

∂~r
+

q

m
ε~E0e

−iωt · ∂
∂~c

]
fMB(c)[1 + εΦω(~c )e−iωt]

= ε

∫
fMB(c)FMB[Φω(~c ′)− Φω(~c )]e−iωt|~c− ~c1| b db dψ d3c1 = −εnineI[Φω]e−iωt . (25)

The term ε0 vanishes, and ε1 gives

−iωfMB(c)Φω(~c )e−iωt +
q

m
ε~E0e

−iωt · (− m~c

kBT
)fMB(c) = −nineI[Φω]e−iωt . (26)

Using linearity and isotropy we can make the ansatz

Φω(~c ) =
q

ni
φ̂ω~c · ~Eω , (27)

resulting in

1

kBT
f̂MB(c)~c = I[φ̂ω~c ]− iω

ni
f̂MB(c)φ̂ω~c , (3.32)

which has a complex solution for the perturbation φ̂ω, which gives a complex electrical conductivity, when
integrating the get the current:

~Jj = q

∫
d3c~cjfMB(c)[1 + ε

q

ni
φ̂ω~c · ~Eωe−iωt] =

[
εq2

ni

∫
d3c~cj~ckfMB(c)φ̂ω

]
· ~Eω ke−iωt

= [σ0 + iσ1]jk ~Eω ke
−iωt = (~~σω · ~Eωe−i(ωt−α))j , (3.33)

→ exercise 3.10.
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3.8 Relaxation dynamics

Assumptions

• near equilibrium

• no ~E-field

• spatial dependence described with Fourier analysis:

f(~r,~c , t) = fMB(~c )[1 + Φ~k(~c , t)ei
~k·~r] (3.34)

• and Φ~k(~c , t)� 1

Insering into eq. (3.1) gives the l.h.s.[
∂

∂t
+ ~c · ∂

∂~r

]
fMB(~c )[1 + Φ~k(~c , t)ei

~k·~r] =fMB(~c )

[
∂Φ~k(~c , t)

∂t
+ i~k · ~cΦ~k(~c , t)

]
ei
~k·~r (28)

and the r.h.s.∫
fMB(~c )FMB(~c1)[Φ~k(~c ′, t)− Φ~k(~c , t)]ei

~k·~r|~c− ~c1| b db dψ d3c1 =− nineI[Φ~k]ei
~k·~r (29)

Dropping the exponential and moving the second term of eq. (28) to eq. (29), we can define the linear
operator

L~kΦ~k :=neniI[Φ~k] + i~k · ~cΦ~k(~c , t) , (30)

which gives the linear differential equation for the modes

fMB(~c )
∂Φ~k(~c , t)

∂t
= −L~kΦ~k . (3.35)

Making an ansatz for the seperation of variables with an exponentially decaying solution

Φ~k(~c , t) = Φ~k(~c )eλt , (31)

one gets as a result the generalised eigenvalue equation

L~kΦ~k = λfMB(~c )Φ~k . (3.36)

3.8.1 Properties of the linear operator

Defining the scalar product of functions in the normal way:

(g, h) :=

∫
g∗(~c )h(~c )d3c . (3.37)

Hermiticity With the same arguments as in sec. 3.5, i.e. the comments between eq. (4) and eq. (5), we
can show:

(g, L0h) =

∫
fMB(~c )FMB(~c1)g∗(~c )[h(~c ′)− h(~c )]|~c− ~c1| b db dψ d3c1 d3c (3.38)

=

∫
fMB(~c )FMB(~c1)[g∗(~c ′)− g∗(~c )]h(~c )|~c− ~c1| b db dψ d3c1 d3c = (L0g, h) , (3.39)

proving that L0 is a hermitian operator.

Positivity But applying the above arguments for only 1/2 of the scalar product, we can show

(g, L0g) = 1
2

∫
fMB(~c )FMB(~c1)[g∗(~c ′)− g∗(~c )][g(~c ′)− g(~c )]|~c− ~c1| b db dψ d3c1 d3c ≥ 0 , (3.40)

which is already obvious from the hermiticity.
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3.8.2 Kinetic gap

Since we have a collisional invariant, like the charge, where g = const ≡ 1, we do encounter the eigenvalue
λ0 = 0. For ~k = 0 we get them for arbitrary scattering, but the other eigenvalues depend on the model.

On general grounds, one can prove, that the eigenvalues for ~k → 0 are not dense at 0, meaning:

∀~k > 0 ∃∆(~k) > 0 , so that λ1(~k) ≥ ∆(~k)|~k| . (32)

Consequence: any distribution that is not Maxwellian will decay to a Maxwellian distribution, as Φ = const
gives exactly the Maxwellian distribution.

Assuming the eigenvalues are analytical at ~k = 0, the smallest eigenvalue will be a continuation
from λ0 = 0 for small enough ~k. Then the long term behaviour of the system will be dominated by this
eigenvalue!

3.8.3 Spectrum of the linear operator

Introducing ε� 1 for small wavevectors, we can write the linear operator, eq. (30), as

L~kΦ~k =neniI[Φ~k] + iε~k · ~cΦ~k(~c , t) = L0 + iεL1 . (33)

Considering the eigenvalue problem, eq. (3.36), for the smallest eigenvalue λ ≡ λ0(~k) and expanding this
eigenvalue and its eigenfunction Ψ in a perturbation series

λ = 0 + ελ1 + ε2λ2 + . . . (3.41)

Ψ = 1 + εΨ1 + ε2Ψ2 + . . . , (3.42)

we can expand eq. (3.36)

(L0 + iεL1)Ψ =λfMB(~c )Ψ (3.36′)

(L0 + iεL1)(1 + εΨ1 + ε2Ψ2 + . . . ) = (ελ1 + ε2λ2 + . . . )fMB(~c )(1 + εΨ1 + ε2Ψ2 + . . . ) . (34)

into powers of ε:

ε0 : L01 = 0 (35)

ε1 : L0Ψ1 + iL11 = fMB(~c )λ1 (36)

ε2 : L0Ψ2 + iL1Ψ1 = fMB(~c )[λ1Ψ1 + λ2] (37)

ε1 : L0Ψ3 + iL1Ψ2 = fMB(~c )[λ1Ψ2 + λ2Ψ1 + λ3] . (38)

We solve now recursively and reorder the equations by moving the lower order functions with the operator
L1 to the other side. The first equation, eq. (35) is just trivially true: the integral operator of a constant
vanishes. eq. (36) gives

L0Ψ1 = fMB(~c )λ1 − iL11 = fMB(~c )[λ1 − i~k · ~c] . (39)

This equation can only then have a solution, if

0 = (Ψ0 = 1,Ψ1) =

∫
d3c fMB(~c )[λ1 − i~k · ~c] = neλ1 − 0 . (40)

But that means λ1 = 0, too! This simplifies eq. (39) to

L0Ψ1 = neniI[Ψ1] = −i~k · ~c fMB(~c ) = −i~k · ~c ne f̂MB(~c ) , (41)

which has apart from constant factors the same form as eq. (3.25)

I[Φ] =
q

nikBT
fMB(~c )~c · ~E0 , (3.25)

with the ”solution”, eq. (3.19), Φ(~c ) = φ(c)~c · ~E0. We can conclude,

Ψ1 = −ikBT
ni

(~c · ~k)φ̂ , (3.46)
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with φ̂ being the solution of eq. (3.26), will be a solution to our problem, eq. (41).
Now we can come to order ε2, eq. (37):

L0Ψ2 =λ2fMB(~c )− iL1Ψ1 . (42)

Again, like with Ψ1, this equation con only then have a solution, if

0 = (Ψ0 = 1,Ψ2) =

∫
d3c fMB(~c )[λ2 − i~k · ~c Ψ1] = neλ2 − i

∫
d3c fMB(~c )~k · ~c Ψ1 . (43)

But that determines λ2:

λ2 =
i

ne

∫
d3c fMB(~c )L1Ψ1 =

i

ne

∫
d3c fMB(~c )

−ikBT
ni

(~c · ~k)2φ̂ =
kBT

neni

~k2

3

∫
d3c c2fMB(~c )φ̂

=
kBT

neni

~k2

3

3niσ

q2
=

(
kBTσ

neq2

)
~k2 . (3.48)

So our smallest eigenvalue is given by order ε2:

λ0(~k) = 0 + ελ1 + ε2λ2 + · · · = ε2
(
kBTσ

neq2

)
~k2 . (44)

3.8.4 Diffusive behaviour

At large times all modes have relaxed to the smallest wavevector, which relaxes to the Maxwellian distri-
bution . . . in a diffusive manner: we get

ρ(~r, t) =

∫
d3c f(~r,~c , t) =

∫
d3c fMB(~c )[1 + Φ~k(~c , t)ei

~k·~r]

=

∫
d3c fMB(~c )[1 + (1 + εΨ1 + ε2Ψ2 + . . . )ei

~k·~r] . (45)

Integrating again eq. (3.1) over d3~c with ~E = 0 we get

0 =

∫
d3c

[
∂

∂t
+ ~c · ∂

∂~r

]
f [~r,~c; t]

=
∂ρ

∂t
+

∫
d3c [~c · ∇] fMB(~c )[1 + (1 + εΨ1 + . . . )ei

~k·~r]

=
∂ρ

∂t
+∇j

∫
d3c fMB(~c )[0 + (1 + ε[−ikBT

ni
(~c · ~k)φ̂] + . . . )~cje

i~k·~r]

=
∂ρ

∂t
+∇j

∫
d3c fMB(~c )(0− iε[kBT

ni
~ck(−i∇k)φ̂] + . . . )~cje

i~k·~r

=
∂ρ

∂t
− ε
∫
d3c fMB(~c )

kBT

ni
(~c · ~∇)2φ̂ei

~k·~r (46)

But the integral over d3c in spherical coordinates, orienting the ẑ-axis along ~r, reduces (~c · ~∇) to c cos θ∇~r,
resulting in

0 =
∂ρ

∂t
− kBT

ni
∇2

∫
dϕ d(cos θ)c2dc fMB(~c )c2φ̂εei

~k·~r =
∂ρ

∂t
−∇2 kBT

ni

4π

3

∫
c2dc ρf̂MB(~c )c2φ̂ , (47)

where we included the exponential ei
~k·~r into the density ρ when going from fMB to f̂MB. But this is

exactly the same integral that we could identify with σ, eq. (3.27), resulting in

∂ρ

∂t
=∇2 kBT

ni

1

3
ρ

3niσ

q2ne
=

(
kBTσ

q2ne

)
∇2ρ = D∇2ρ (48)

3.8.5 Rigid hard spheres

Since the kinetic energy is conserved in the rigid hard sphere scattering, also the modulus |~c | is conserved
and a constant. Therefore any distribution f(|~c |) is ok and will not relax to the Maxwellian distribution.

Analysing the linear operator I[Ψ] in the subspace of functions, that only depend on the direction ĉ,
reveals that I[Ψ] is hermitian in this subspace. Therefore long term dynamics will show the same diffusive
behaviour.
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3.8.6 Time scales

For small values of the wavevectors, the eigenvalues will be continuous functions of ~k and will have a
hierarchy:

0 = λ0(~k = 0) < λ0(~k 6= 0)� λ1(~k) < λ2(~k) < . . . (49)

λ0 corresponds to conserved ”charges”, λi>0 correspond to kinetic modes.

claim of the book: without spatial dependence, the timescale for λ1 is the collision frequency ν. (see
exercise 3.6.c)

• for t� ν−1 electrons move freely

– ballistic regime

– f is unchanged (as there are no collisions)

• tk ∼ ν−1 establishes the

– kinetic regime

– the kinetic modes relax to the local Maxwell distribution

• around t ∼ (Dk2)−1 � ν−1 the distribution is Maxwellian, but still inhomogeneous

⇒ Hydrodynamic equations

• for t� (Dk2)−1 we have thermodynamic equilibrium:

– Maxwell Boltzmann distribution with uniform density

condition for time scale separation: k is small enough, that (Dk2)� ν.

• taking k = 2π
L with the characteristic length scale L for density variations we can write L � 2π`,

with ` being the mean free path.

⇒ time scale separation

⇒ Navier Stokes equations

– the 5 collisional invariants of mass, momentum, and energy

– give 5 null-eigenvalues that generate the hydrodynamic modes

3.9 The Chapman-Enskog method

uses time scale separation

1. step:

f(~r,~c, t) = h(~c;n(~r, t)) (3.52)

2. introduce a small parameter ε

• assuming that inhomogeneities are small

⇒ gradient term is multiplied with ε

• assuming the electric field is small

⇒ ~E term is multiplied with ε

3. making a perturbation expansion for the distribution function

h = h0 + εh1 + ε2h2 + . . . (3.53)
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4. introducing scaled time variables:

t0 = t , t1 = εt , t2 = ε2t , . . . (50)

and writing

n(~r, t) = n(~r, t0, t1, t2, . . . ) (51)

then

∂n

∂t
→ ∂n

∂t0
+ ε

∂n

∂t1
+ ε2

∂n

∂t2
+ . . . (3.54)

and plugging all that into the Lorentz equation, eq. (3.1):[
∂

∂t
+ ε~c · ∂

∂~r
+ ε

q

m
~E · ∂

∂~c

]
h =

∫
[h′F ′ − hF ]|~c− ~c1| b db dψ d3c1 (3.1′)

• Integrating the r.h.s. over d3c always yields zero due to charge conservation (i.e. the collisional
invariant).

• expanding the l.h.s. in ε we get

∂h0
∂n

[
∂n

∂t0
+ ε

∂n

∂t1
+ ε2

∂n

∂t2
+ . . .

]
+ ε

∂h1
∂n

[
∂n

∂t0
+ ε

∂n

∂t1
+ . . .

]
+ ε2

∂h2
∂n

[
∂n

∂t0
+ . . .

]
+ ε~c · ∂n

∂~r

[
∂h0
∂n

+ ε
∂h1
∂n

+ . . .

]
+ ε

q

m
~E ·
[
∂h0
∂~c

+ ε
∂h1
∂~c

+ . . .

]
= ε0

∂h0
∂n

∂n

∂t0
(52)

+ ε1
[
∂h0
∂n

∂n

∂t1
+
∂h1
∂n

∂n

∂t0
+ ~c · ∂n

∂~r

∂h0
∂n

+
q

m
~E · ∂h0

∂~c

]
(53)

+ ε2
[
∂h0
∂n

∂n

∂t2
+
∂h1
∂n

∂n

∂t1
+
∂h2
∂n

∂n

∂t0
+ ~c · ∂n

∂~r

∂h1
∂n

+
q

m
~E · ∂h1

∂~c

]
+ . . . (54)

– order ε0 integrated should be zero, telling us: ∂n
∂t0

= 0

⇒ we can make the ansatz:

h0 = n(~r, t1, t2, . . . )f̂MB(c) . (55)

– when integrating the order ε1 term, we see:

∗ the second term is zero because ∂n
∂t0

= 0

∗ the third term is zero, because it is odd in ~c

∗ the fourth term is zero, as it is only a boundary term (and f̂MB

∂~c is odd in ~c, too)

⇒ ∂n
∂t1

= 0, too!

⇒ we can make the ansatz:

h1 = h0Φ(~c ) = n(~r, t2, . . . )f̂MB(c) Φ(~c ) . (56)

• inserting this ansatz, eq. (56), into the r.h.s. of eq. (3.1′) we get

=

∫
n(~r, t2, . . . )f̂MB(c)F [Φ(~c ′)− Φ(~c )]|~c− ~c1| b db dψ d3c1 = −n I[Φ] , (57)

since f̂MB(c′)F (c′1) = f̂MB(c)F (c1).

• the full ε1 equation with the ansatz eq. (56) becomes

−n I[Φ] =~c · ∂n
∂~r

∂h0
∂n

+
q

m
~E · ∂h0

∂~c
= ~c · (~∇n)f̂MB(c) +

q

m
~E · ∂f̂MB(c)

∂~c
n (58)

= f̂MB~c · (~∇n) +
nq

m
~E · −m~c

kBT
f̂MB = −nf̂MB

~c

kBT
·

[
q ~E − kBT ~∇n

n

]
=: −n f̂MB

kBT
~c · ~G ,

which suggest due to linearity and isotropy the ansatz

Φ(~c ) = φ̂~c · ~G . (59)
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• inserting now eq. (56) with eq. (59) into the ε2 equation we get

∂h0
∂n

∂n

∂t2
+ ~c · ∂n

∂~r

∂h1
∂n

+
q

m
~E · ∂h1

∂~c
= − n I[φ̂~c · ~G] . (60)

Multiplying with the charge q and integrating over d3c gets rid of the third term, as it is again a
surface term, and of the r.h.s. I[φ̂~c · ~G], giving

0 =
∂

∂t2
q

∫
d3cf̂MBn+ ~∇q

∫
d3c h1~c =

∂ρ

∂t2
+ ~∇ · ~J , (61)

but ~J can now be expressed as

~Jj = q

∫
d3c nf̂MBφ̂~cj~ck

[
q ~Ek −

kBT ~∇kn
n

]

= q2n

[∫
d3c f̂MBφ̂~cj~ck

]
~Ek − qkBT

[∫
d3c f̂MBφ̂~cj~ck

]
~∇kn . (62)

We can recognize the terms in the bracket as the conductivity tensor, eq. (3.20). Since we have
an isotropic system, we can take the trace to obtain the scalar conductivity, eq. (3.21), or with the
reduced functions, eq. (3.27): [∫

d3c f̂MBφ̂~cj~ck

]
=

σ

q2n
, (63)

giving

~Jk =σ ~Ek −D~∇kρ , (64)

and with eq. (61)

0 =
∂ρ

∂t2
+ ~∇k(σ ~Ek)−D~∇2ρ , (65)

which states the dynamics at the slow scale t2.

3.10 Applications: bacterial suspensions, run-and-tumble motion

some bla bla about bacteria . . . E. coli follow a Lorentz-like distribution

∂f

∂t
+ V n̂ · ~∇f =µ

∫
W (n̂′, n̂)f(~r, n̂′, t)d2n̂′ − µf(~r, n̂, t) . (3.63)

The first term on the r.h.s is the gain term, the second the loss term.

• W gives the probability of changing the direction of motion from n̂ into n̂′.

⇒ Therefore ∫
W (n̂′, n̂)d2n̂ = 1 . (3.64)

• in an isotropic medium W (n̂′, n̂) = w(n̂′ · n̂) with the flat distribution W = 1
4π .

• eq. (3.63) is identical to the Lorentz equation for hard spheres

• with the identification niπR
2|~c | = µ we get diffusive motion for tD � µ−1 with the diffusion

coefficient D = V 2

3µ .

• taking the more accurate w(n̂′ · n̂) (than the flat W = 1/4π) — expanding like in small wave vectors,
i.e. sec. 3.8, or with the Chapman-Enskog method, i.e. sec 3.9 — we get

D =
V 2

3µ(1− α)
, (3.66)

with

α =

∫
(n̂′ · n̂)w(n̂′ · n̂)d2n̂ = 2π

∫ π

0

sin θ cos θw(cos θ)dθ = 2π

∫ 1

−1
xw(x)dx . (3.66)

α = 0 gives isotropic tumbling. E. coli has α ∼ 0.33.
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There is something like conductivity, called chemotaxis: the bacterial behaviour is modeled by
making the tumbling probability µ dependent on the chemical gradient ~∇c:

µ → µ(n̂ · ~∇c) , (66)

giving the kinetic model

∂f

∂t
+ V n̂ · ~∇f =

∫
µ(n̂′ · ~∇c)w(n̂′ · n̂)f(~r, n̂′, t) d2n̂′ − µ(n̂ · ~∇c)f(~r, n̂, t) . (3.68)

When the gradient is small we can work in linear response theory and get the distribution

f(~r, n̂, t) = f0

[
1 +

µ1n̂ · ~∇c
µ0

]
, (3.69)

where µ is linearly expanded

µ(n̂ · ~∇c) = µ0 − µ1n̂ · ~∇c , (67)

giving the current

~J =

∫
V n̂f(~r, n̂, t) d2n̂ =

4πµ1V

3µ0

~∇c , (3.70)

which is the chemotactic effect.


