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Problems

4.16. Collisional heat flux in dense gases.  Obtain the collisional contribution to the heat flux gc,
performing an analysis similar to that applied to obtain the collisional stress tensor (4.91). Compute the
collision integral for ¢ = mc?/2 in the Enskog equation and render it as a divergence, v q. Show that
it has the structure discussed in Section 2.6.3, where the third contribution (potential transport) is not
present for hard spheres.

The heat flux J, is defined by the conservation equation
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where the energy density pe is
pe = pyo = —kT[f] ——7/@(0—1))2 f(7 &) d3¢c (4.44)
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The Enskog equation is given by the Enskog collision operator
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= JEnskog[f](€) (4.87)

where 77 = Dn.

The collision integral for ¢(¢) = mc?/2 is defined as integrating ¢©(¢) Jenskog[f](€) over d>3¢;
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which we can split into the direct collision, coming from J_,
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and the inverse collision, coming from J
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e As a first step we exchange the names of the physical momenta in the inverse collision:

(@.c)« (@) = (Fn) (@G, -n), (4)

which induces the reversal of n:
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e using the collision rule for hard spheres (exercise 4.5) we have
giving

leading to
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e remembering that the phase-space for d3¢] d3¢” is the same as for d3¢) d3¢, we can change the integral
to the original integration variables:

Dm/ P + 71/2) (7, ) (7 + 78, 6,)(§ - )O(F - ) d®h d*e, d°F (9)

which allows us to write the collision integral I, = I, — I,_ as

2
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e using again the collision rule we can evaluate
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e interchanging the integration variables ¢ <> ¢ results in the change § — —g by the definition of §
and also 7 — —n due to the orientation of 7 from ¢ to €1, but not C. Then we get
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which is the same as I,, eq. (10).

e Averaging over I, and I, we get

IZVQ = %(Iw + Ig/o)
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Taylor expanding the function around 7 with the abbreviations x = x(7), f = f(¥,¢), and f; =
we get with changing to Jacobi coordinates
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Taylor expanding also in the velocities around f (é) = f we get to first order in g’;
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This integral integrates over an odd power of g and hence vanishes.
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