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Problems

4.11. BGK model. Show that the BGK model has the same collisional invariants as the Boltzmann
equation and that an H-theorem exists.

d f

d t
=
∂f

∂t
+ ~c · ∂f

∂~r
+

~F

m
· ∂f
∂~c

= JBGK[f ] := ν{fMB(~c ;n[f ], ~v[f ], T [f ])− f(~r,~c, t)} , (4.41)

with

n[f ] =

∫
f(~r,~c, t) d3~c , (4.42)

~v[f ] =
1

n(~r, t)

∫
~c f(~r,~c) d3~c , (4.43)

3

2
kBT [f ] =

1

n(~r, t)

∫
m

2
(~c− ~v)2 f(~r,~c) d3~c . (4.44)

• A collisional invariant ϕ(~c ) is defined as the function that gives zero when multiplied with eq.(4.41)
and integrated over d3~c:

0 =

∫
ϕ(~c ) JBGK[f ] d3~c := ν

∫
ϕ(~c ) {fMB(~c ;n[f ], ~v[f ], T [f ])− f(~r,~c, t)} d3~c

= ν

∫
ϕ(~c ) {n[f ]

(
m

2πkBT

)3/2
e−m(~c−~v)2/(2kBT ) − f(~r,~c, t)} d3~c . (1)

• the functions to be tested are ϕ = {m,m~c , 12m(~c− ~v)2}:

1: ∫
{n[f ]

(
m

2πkBT

)3/2
e−m(~c−~v)2/(2kBT ) − f(~r,~c, t)} d3~c

= n[f ]

(∫ (
m

2πkBT

)3/2
e−m(~c ′)2/(2kBT ) d3~c ′

)
− n[f ]
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(∫
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2

d3~x

)
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(
π−3/24π

∫ ∞
0

e−r
2

r2 dr

)
− n[f ] = 0 . (2)

~c: ∫
~c {n[f ]

(
m

2πkBT

)3/2
e−m(~c−~v)2/(2kBT ) − f(~r,~c, t)} d3~c

= n[f ]

(∫
(~c ′ + ~v[f ])

(
m

2πkBT

)3/2
e−m(~c ′)2/(2kBT ) d3~c ′

)
− n[f ]~v[f ]

= n[f ]

(
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∫
π−3/2e−~x

2
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)
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(
π−3/24π

∫ ∞
0

e−r
2
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)
− n[f ]~v[f ] = 0 . (3)
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)
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2
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3
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π

8

)
− 3kBn[f ]T [f ] = 0 . (4)
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For the H-theorem we have to find a function H, of which the total time derivative is always negativ.

• Using the same ansatz as for the Boltzman equation

H[f ] =

∫
f(~r,~c, t) ln[f(~r,~c, t)/f0] d3~c , (4.23)

we get analogously

dH

d t
=

∫
[ln[f(~r,~c, t)/f0] + 1]

d f(~r,~c, t)

d t
d3~c =

∫
[ln[f(~r,~c, t)/f0] + 1] JBGK[f ] d3~c , (4.24)

with a steady distribution, that does not depend on time. We know that fMB(~c ;n[f ], ~v[f ], T [f ]) does
not depend on time. If we set now for the definition of our H-function f0 = fMB(~c ;n[f ], ~v[f ], T [f ])
we get

dH

d t
= ν

∫
[ln f(~r,~c, t)− ln f0 + 1] {fMB(~c ;n[f ], ~v[f ], T [f ])− f(~r,~c, t)} d3~c

= −ν
∫

[ln fMB(~c ;n[f ], ~v[f ], T [f ])− ln f(~r,~c, t)] [fMB(~c ;n[f ], ~v[f ], T [f ])− f(~r,~c, t)] d3~c

= −ν
∫

[lnx− ln y] [x− y] d3~c < 0 , (5)

since we had already, that 1 is a collisional invariant, eq. (2) and its integral vanishes.

• The rest of the argument for the H-theorem is exactly the same as for the Boltzmann equation:

1. the integrand for H, f ln[f/f0], is bounded from below.

2. so H can only then become unbounded from below, if the integral for large |~c| diverges.

3. that requires that f ln[f/f0]c2 < −Ac−1 for some positive constant A.

4. the total energy is finite and conserved, limiting f < Bc−5 for some positive constant B.

5. conditions 3. and 4. together imply f < f0e
−Ac2/B .

6. this result 5. gives a finite H, which contradicts the assumption, that H can be unbounded
from below.

7. therefore H will obtain its minimum value, given by the collisional invariants, i.e. by fMB.


